翻訳と辞書 |
Cauchy-continuous function : ウィキペディア英語版 | Cauchy-continuous function In mathematics, a Cauchy-continuous, or Cauchy-regular, function is a special kind of continuous function between metric spaces (or more general spaces). Cauchy-continuous functions have the useful property that they can always be (uniquely) extended to the Cauchy completion of their domain. == Definition ==
Let ''X'' and ''Y'' be metric spaces, and let ''f'' be a function from ''X'' to ''Y''. Then ''f'' is Cauchy-continuous if and only if, given any Cauchy sequence (''x''1, ''x''2, …) in ''X'', the sequence (''f''(''x''1), ''f''(''x''2), …) is a Cauchy sequence in ''Y''.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Cauchy-continuous function」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|